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Abstract— The natural flexibility of soft robotic grippers
allows for versatile and compliant grasping. However, this same
flexibility can restrict the gripper’s strength. Striking a balance
between compliance and strength is essential for effective soft
grippers. In this work, we present Flexible Robust Observant
Gripper (FROG), a soft gripper that is both compliant and
strong. We describe the mechanical design of the gripper,
characterize the soft flexures used in the design, and analyze
the grasp forces generated by the gripper. Utilizing the struc-
ture of the gripper, we develop feedforward grasp controllers
and a classifier to distinguish between grasp types. Grasping
experiments show that FROG can effectively grasp a variety
of objects, including very soft or delicate items. Holding force
tests show that our gripper can conform to the grasped object
and exert large grasp forces.

I. INTRODUCTION
Soft grippers allow robots to passively accommodate for

uncertainty in the shape and pose of the objects they are
manipulating by introducing compliance at the point of
interaction between the robot and its environment. However,
this same compliance limits the grasp forces that these
grippers can exert [1]. This is unacceptable in many real-
world manipulation tasks, where the robot must operate
in unstructured environments while still exerting significant
forces through the grasped object [2, 3]. An ideal gripper
would remain compliant before and during the formation of
a grasp, and then stiffen during the grasp to apply significant
forces.

This desired stiffness modulation can be achieved either
through active or passive methods [4]. Active methods use
actuators to change the mechanical properties of the soft
gripper, such as layer/particle jamming [5, 6, 7] or antag-
onistic actuation [8, 9]. These methods often suffer from the
inability to significantly vary the stiffness and slow response
times [10]. Passive methods rely on contact constraints to
control stiffness, as seen in rigid underactuated hands [11].
However, applying this method to soft hands is challenging
due to their inherent lack of structure, further complicating
control and proprioception.

To address these challenges, we introduce Flexible Robust
Observant Gripper (FROG), a soft gripper that passively
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Fig. 1: Flexible Robust Observant Gripper (FROG) mounted
on a Universal Robots UR5, with the cable path highlighted
in green (left). FROG is simultaneously strong and compli-
ant, shown lifting a 10 lb (4.5 kg) dumbbell (middle) and
being deformed by a plastic bat (right).

stiffens through contact (Fig.1). By selectively replacing
soft elements with comparatively rigid ones, the number
of effective degrees-of-freedom in the structure is reduced
[12, 13]. This way, each object contact constrains more of
the system, increasing the change in stiffness and allowing
for stronger grasps.

Replacing soft elements with stiffer ones streamlines the
relationship between the actuator and the grasp, facilitating
actuator-based proprioception. While soft grippers are adept
at blindly grasping objects, they cannot provide information
about how the object was grasped without complicated sens-
ing structures [14, 15, 16, 17]. Actuator proprioception for
these grippers is impractical due to difficulties in measuring
actuator effort and/or displacement and soft material drift
over time.

To further simplify the relationship between actuator and
grasp quantities, FROG is actuated by cables [18, 19, 20].
Common bio-inspired cable routing paths often require the
use of large cable tensions as the cables run close to
the (finger) joints and provide low mechanical advantage.
FROG uses an alternative cable routing [21] to increase
mechanical advantage, enabling the use of a direct drive
motor [22] to estimate cable tension and allow for control
of actuator displacement and effort.

FROG achieves hardware complexity on par with other
soft grippers while providing additional control over the
grasp force and proprioception of the grasp type through
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(a) (b) (c)
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F

Fig. 2: (a) Section view of FROG showing three of the five
fingers. The motor is shown in red, motor driver in yellow,
spool in orange, and a section of cable in green. Arrows on
the cable path show the direction of travel when closing the
gripper. An orange square marks the location at which the
cable is terminated at the finger. (b) Without a backstop, large
deformations of the flexure joints limit the fingertip force. (c)
Contact with a backstop greatly increases the stiffness of the
joint, allowing for more forceful fingertip grasps.

the integration of simple control and sensing algorithms. We
develop a feedforward grasp force controller and a stiffness-
based classifier to distinguish between grasp types, where
grasp types are defined by the finger segments in contact
with the object. We characterize the dynamic properties of
the joints used in each finger and the holding force that the
gripper can exert. Finally, we demonstrate our gripper by
manipulating a wide variety of items, including fragile and
soft objects.

This paper contributes the following:
1) Design and fabrication of Flexible Robust Observant

Gripper (FROG), a cable-actuated soft gripper that
can robustly conform to grasped objects and improves
proprioception and control.

2) Development of two simple feedforward grasping
modes to allow FROG to grasp delicately or forcefully
and characterization of the strength of FROG’s grasps.

3) Development and evaluation of a stiffness-based propri-
oception algorithm that can estimate the grasp type.

4) Demonstration of FROG’s grasping performance on
everyday objects and the effectiveness of FROG’s soft
grasp mode on fragile objects.

II. SYSTEM DESIGN
In this section we describe FROG. We first introduce

the hardware design that incorporates stiffer elements into
the gripper, allows for deformation through the addition of
flexural joints, and enables actuator proprioception through
a direct-drive cable mechanism. Next, we characterize the
flexural joints to inform the design of the feedforward grasp
controllers and a grasp type proprioception algorithm. We
then present the grasp controllers and the proprioception
algorithm. Finally, we analyze the grasp forces generated by
the gripper.

A. Hardware Design

Our gripper design has 5 fingers, driven by a single
tension-controlled cable (Fig.1-a). Each finger is soft, with a

Shore hardness of 72A, and is 3D printed in one piece (using
Carbon EPU 40). Instead of making the entire finger thin,
which would allow for continuous bending, we add structure
by thickening the finger and adding two flexure joints (Fig.2-
b). This splits the finger into three links. Because the
stiffness of the flexure joint is low compared to the link
stiffness, deformations are mostly localized at the joints. The
increased structure allows contacts to effectively constrain
and stiffen the finger and allows for actuator proprioception.
The flexures are 4.3 mm thick and 15 mm wide, with a notch
radius of 6 mm.

The flexures also support two secondary motions, side-
to-side and twisting, enabling the fingers to conform to
surfaces that are not normal to the nominal link surface. By
incorporating backstops in the flexures, the finger’s stiffness
is enhanced, enabling significant force application in grasps
where contact is made on the distal links (Fig.2-c). The
fingers are glued into a 3D printed base (Markforged Onyx)
with two-part epoxy.

As shown in Fig.2-a, the closure of the fingers is ac-
tuated by a single UHMWPE (Ultra-high-molecular-weight
polyethylene) cable routed around the fingers. This cable
routing is inspired by Kim et al. [21] and allows the gripper
to be actuated with a lower cable tension than typical
cable-actuated grippers. This is due to the longer joint-cable
distance and the cable applying two tension forces each time
it traverses a finger.

From the spool, the cable is routed through the proximal
flexure’s center of rotation to minimize additional torque
on the joint and then goes through the cable guides on
the proximal links of the fingers. The cable is then routed
through a PTFE (polytetrafluoroethylene) Bowden tube and
the cable guides of the distal links before it is terminated at
one of the distal links. From the actuator’s perspective, the
stiffness of the proximal joint is less than that of the distal
joint. This leads to significant movement in the distal joint
only after the proximal link has established contact.

The cable guides were designed for a cable tension of
10 N; each one consists of two bearings (682ZZ) on dowel
pins and a PTFE guide tube that are glued into a 3D printed
housing (Carbon UMA 90) using cyanoacrylate (CA) glue.
CA glue is also used to glue the cable guide assembly into
the fingers. Features on the housing prevent the cable from
falling off the roller if it becomes slack.

Off-the-shelf polyester bellows between the fingers prevent
grasped objects from directly contacting the cables. The
bellows are attached to the fingers with double sided tape.

The cable is pulled by a direct drive brushless DC gimbal
motor (T-motor GB54-1, mjbots moteus r4.11). The spool
has a radius of 11.5 mm, and is sized so that the motor can
continuously pull the cable to the design tension of 10 N. The
spool is designed to ensure subsequent wraps of the tendon
completely overlap with previous ones, allowing FROG to
compensate for changes in spool diameter as the cable is
wrapped. As the typical current through the motor is less
than 2 A, the motor driver’s stock current sense resistors (0.5
mΩ) are replaced with larger ones (5 mΩ). The direct drive
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actuator allows for control over cable tension and position,
increasing the capability of FROG when grasping objects.

Overall, the gripper is 180 x 170 mm, with a ideal
maximum grasp diameter of 130 mm. Because of friction,
typically a maximum grasp diameter of only 110 mm is
achievable. The bellows and finger thickness limit the mini-
mum grasp diameter to 38 mm.

B. Dynamic Flexure Characterization

Understanding how the flexure joint torques evolve over
time informs how time-varying effects should be compen-
sated for in the design of the controllers and proprioception
algorithm. We characterize the joint torque in response to the
displacement of the flexure. As seen in Fig.3-a, we mount
test flexures to a custom torsion testing system, consisting
of a servo (Dynamixel MX-28) and a force/torque sensor
(ATI gamma SI-32-2.5). The force/torque sensor measures
the reaction torque generated when the servo arm displaces
the flexure.

Measuring the steady-state torque needed to displace a
flexure, we see that it is relatively linear with displacement
until approximately 1.25 radians (Fig.3-b). This suggests that
a linear dynamical model will model the flexure’s dynamic
response well. Nonlinear behavior at large displacements is
expected because of the elastomeric material used.

We choose a Generalized Maxwell model [23] with five
time constants, which we fit using MATLAB’s System
Identification Toolbox using data from exponential chirps
(0.25 - 0.0005 Hz, 0.35 radian amplitude, π/4 radian offset)
on five flexures. We verify our model by comparing the
real and predicted responses to a step displacement of π

4
radians (Fig.3-c). We find good agreement, with a MSE of
1.2 · 10−5 N2-m2 over 500 seconds, roughly 5x the longest
time constant in the model.

Overall, we observe a relatively linear response and sig-
nificant amounts of stress relaxation. The linearity of the
response suggests that we will be able to use a stiffness-
based proprioception algorithm (Sec. II-D). To avoid having
to account for viscoelastic effects in our proprioception algo-
rithm, we choose a closing period which makes the system
quasi-static while still allowing for reasonably quick grasps.
We choose a closing period of 5 seconds, corresponding to
a motor velocity of 2π rad/s, as it is more than 3 times
larger than all but the largest time constant in the model.
The chosen closing period should greatly reduce the amount
of stress relaxation after the flexures stop moving, which we
validate in Sec. III-A by measuring how the holding force
changes over time.

C. Grasp Mode Design

FROG’s direct drive actuator allows for measurement and
control over actuator displacement and effort. To show how
these properties increase the types of objects that FROG can
manipulate, we develop example controllers for two grasp
modes: a soft grasp and a hard grasp. These grasps allow
FROG to delicately grasp fragile objects using the soft grasp
mode or to forcefully grasp rigid objects using the hard grasp

F/T Sensor

Servo
Flexure

(a)

(b) (c)

Fig. 3: (a) The torsion testing system used to test flexures.
(b) Steady state torque of a flexure. The steady state torque
is linear with displacement until 1.25 radians, shown by the
dashed line. (c) Step responses predicted by the identified
model and measured on the testing system.

mode. We assume the choice of grasp mode is determined
by the user or a higher-level planner.

For these controllers, we spool the cable at a set velocity
(2π rad/s). Every control cycle, we measure the current
cable position p and the controller determines the maximum
tension the motor is allowed to exert f(p).

The controller for the hard grasp mode is simple: we
command the motor to spool the cable with f(p) = fmax =
10 N. This exerts the largest grasp forces, resulting in the
strongest grasp possible.

For the soft grasp mode, we leverage the physical con-
sistency of our finger design and fine control over gripper
actuation effort to do approximate feedforward force control.
We assume that all movement stops after contact. We define
fnc(p) to be the tension force needed to close the gripper
without contact at a cable position p. We measure fnc(p) by
closing the gripper with no object contact (Fig.4-b). During
a soft grasp, we command the motor to spool the cable
with f(p) = fnc(p) + c + ϵ, where c is a experimentally
determined offset to ensure the gripper consistently closes
in all orientations and ϵ is a small user-specified quantity
corresponding to grasp force. Empirically, we observe that
c = 0.3 N and ϵ = 0.1 N generates grasps that can pick up
a variety of delicate and lightweight objects.

Since the grasp force is a function of both the cable tension
and contact locations, we cannot do true feedforward force
control as we do not know where objects contact the fingers
of FROG. Despite the range of possible contact forces, we
demonstrate in Sec. III-C that FROG is still able to grasp a
variety of fragile objects using the soft grasp mode. In Sec.
II-D we describe why we cannot estimate contact locations
in the soft grasp mode.
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Proximal Distal Both
(a)

(b) (c) (d)

Fig. 4: (a) Examples of the three grasp types we attempt to differentiate between using our grasp classifier. Cable tension
(b) and finger stiffness (c) over 10 trials in a grasp with no contact and in an example grasp with both proximal and distal
contact, shown in green and orange respectively. Each trial is shown in a shaded line with the average shown in the darker
line. Because the trials are very repeatable, the trajectories overlap. (d) Distribution of maximum finger stiffness for different
grasp types.

D. Grasp Type Proprioception

To show how FROG’s structure increases the information
implied from its actuator, we demonstrate the effectiveness
of a simple stiffness-based proprioception algorithm.

As the links of an underactuated finger come into contact
with an object, the stiffness seen from its actuator changes
[24]. An example is shown in Fig.4-c for a grasp with object
contact on all links. The actuator stiffness (kex) closely
follows the grasp with no contact (knc) until contact is
made, after which the stiffness increases. Previous work has
focused on fingers with rigid links and have used this effect
to estimate the exact location of contact on the links of
an underactuated finger [25, 26]. We observe that similar
techniques can be used as long as the joints are significantly
less stiff than the links.

Rather than analytically computing the exact location of
contact, we take a more data-driven approach to estimate the
grasp type due to the difficulty of modeling our flexible link
fingers. We define three grasp types (Fig.4-a):

• Proximal: All fingers are contacting the object with the
proximal link

• Distal: All fingers are contacting the object with the
distal link

• Both: All fingers are contacting the object with both
links

We limit ourselves to the case where all fingers contact
the object with the same contact state (e.g. all fingers contact
the object on their distal links, or a “distal” grasp). However
in practice, it is possible for different fingers to contact the
grasped object with different contact types. For example, 3
fingers could contact the object on their distal links while
the other 2 fingers contact the object on both their proximal
and distal links. In this example, we expect this to result in a
grasp stiffness between the stiffness of a “distal” and “both”
grasp. During both the training and test phases (Sec. III-B),
if FROG grasps an object with mixed contact types, we do
not include the trial. Additionally, we do not include trials
with grasps that are not stable.

We only perform grasp classification in the hard grasp
mode because the tension limit in the soft grasp mode
prevents us from measuring the stiffness of the fingers after
contact. While the gripper is closing in the hard grasp mode,
we measure and low-pass filter the instantaneous finger
stiffness k(p) = δf(p)

δp , recording the maximum instantaneous
stiffness. We use the maximum stiffness rather than the final
stiffness because at the end of the grasp, the fingers continue
to move after the maximum tension has been reached due to
viscoelastic effects. We use a moving average filter with a
window size of 20 samples (0.1 seconds).

We collect the maximum stiffness from different grasps
on 8 training objects for a total of 35 data points (Table I).
Items are grasped more than once if FROG is able to grasp
the item with multiple grasp types or if the orientation of
the item significantly changed how the gripper contacts the
object. The measured stiffnesses, classified by grasp type,
are shown in Fig.4-d.

After a grasp, we use the maximum instantaneous stiffness
to classify the grasp using a k-nearest neighbors classifier
(k = 5). We evaluate the accuracy of our classifier in Sec.
III-B. The results and test objects are shown in Table II.

E. Grasp Force Analysis

Because FROG’s actuator is coupled to all of its fingers,
the geometry of an object influences the forces that are
exerted on it during a grasp. To show that FROG is able
to consistently grasp a wide variety of objects, we analyze
the extent to which the sum of contact forces changes
in response to object geometry. We focus our analysis on
“distal” grasps using the hard grasp mode as we observe
that these grasps occur frequently in common manipulation

Training Items

Baseball, Plastic Peach, Plastic Pear, Can of Tuna, Plastic Bottle,
Metal Tumbler, Spray Can, Aluminum Stand

TABLE I: The training objects used to fit the grasp classifier.
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Fig. 5: (a) Top view of FROG grasping an apple and the
planar approximation we use for grasp force analysis. (b)
Free-body diagram of one finger during a grasp with contact
on the distal link. We assume all fingers are approximately
vertical in our grasp force analysis.

environments, especially table-top manipulation (Sec. III-B).
We assume that the fingers are approximately vertical

(seen in Fig.5-b), the flexure has zero stiffness, each finger
only moves radially, and that all objects contacts happen at
the middle of each distal link. This idealized setting allows
us to analyze the grasp in a plane, shown in Fig.5-a. We
believe these assumptions are reasonable as the fingers can
only deviate up to π/6 radians from vertical (when the
gripper is completely open), deforming the flexures requires
a maximum of 30% of the hard grasp tension (Fig.4-b), and
the flexures are designed to primarily allow flexion of the
fingers.

Using the free-body diagram shown in Fig.5-b, we balance
moments to relate the contact force of finger i (Fc,i) to the
forces from the cable tension:

Fc,i =
Fa1,i l1 + Fa2,i l2

l3
. (1)

For FROG, l1 = 31 mm, l2 = 73 mm, and l3 = 63 mm.
Next, we look at the top view of the grasp (Fig.5-a) and

balance the forces on each finger radially to find that:

Fa1,i = Ft1(cos(θi) + cos(
3π

5
− θi−1)) (2)

Fa2,i = Ft2(cos(θi) + cos(
3π

5
− θi−1)) (3)

where Ft1 and Ft2 are the tensions in the bottom and top
section of the cable. Since the cable passes through a bowden
tube between the bottom and top sections, Ft1 = eµθFt2

[27], where θ = π radians due to the design of the gripper.
We assume the coefficient of friction between the cable and
the bowden sheath is µ = 0.075 [27]. Because the bottom
cable section is connected to the motor through pulleys and
we are grasping using the hard grasp mode, the tension is
the same as the tension at the motor (Ft1 = Ft = 10 N).

Combining (1) with (2) and (3):

Fc,i = αFt(cos(θi) + cos(
3π

5
− θi−1)) (4)

where α = l1+l2/e
µθ

l3
. Since each finger can only apply

a positive (or zero) force on the object, cos(θi) ≥ 0 and
cos( 3π5 − θi) ≥ 0. Combining and simplifying the two
constraints, we find that: π

10 ≤ θi ≤ π
2 . Because the cables

trace a closed curve, we add a loop closure constraint. Using
the sine rule, we find that the distance from the contact point
i to the center (li) is:

li−1 sin(θi−1)/ sin(
3π

5
− θi−1). (5)

For loop closure, l5 = l0 = C.
We can now find the minimum grasp force by solving the

optimization problem:

min
θ

αFt

4∑
i=0

cos(θi) + cos(
3π

5
− θi)

s.t.
π

10
≤ θ ≤ π

2

li = li−1 sin(θi−1)/ sin(
3π

5
− θi−1)

l5 = l0 = C

(6)

To find the maximum grasp force, we maximize the cost
function instead. We solve the optimization problem using
Drake’s MathematicalProgram [28]. Since the problem is
nonlinear, we solve with 10, 000 random seeds sampled from
π/10 ≤ θinit ≤ π/2 and take the best solution. We see that
the grasp force during a hard grasp can vary between 70 N
and 83 N depending on object geometry.

From this analysis, we expect around a 20% variance in
the grasp force during a “distal” grasp due to object shape.
This suggests that FROG will be able to generate consistent
grasps on a variety of objects. In practice, we expect the
range of grasp forces to both decrease and widen, mainly
due to the stiffness of the flexures.

III. PERFORMANCE CHARACTERIZATION

We evaluate FROG’s performance with three experiments.
First, we test the strength and gentleness of FROG by
measuring its holding force in the hard and soft grasp
modes. Next, we evaluate the performance of our grasping
proprioception algorithm on household objects. Finally, we
demonstrate FROG’s ability to grasp fragile objects. Through
these experiments, we see that FROG is able to forcefully or
softly grasp a variety of objects and estimate how the objects
are being grasped.

A. Holding Force

We evaluate the strength of the grasps generated by
FROG by measuring the force needed to pull out a grasped
object using a tension testing machine (Instron 5944). We
attach FROG to the stationary lower test fixture and the test
object to the moving upper test fixture (Fig.6-a). The test
object is lowered into the gripper until just before the object
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FROGFROG

TestTest
ObjectObject

Hard
Grasp

Soft
Grasp

Sphere Cylinder Triangle

(a) (b)

Fig. 6: Holding force characterization. (a) The test setup used to measure the holding force. FROG and a test object in the
upper fixture are outlined in green and cyan, respectively. The arrow shows the direction of object travel during the test. (b)
The average holding force for each test object over 5 trials with the standard deviation shown by the shaded area. Because
the grasps are very repeatable, the standard deviations are small. The test is terminated early if a force limit (250 N) is
reached. Note that the scales vary across objects and grasp mode.

contacts any part of the gripper and before any of the gripper
fingers contact the mounting stem during a hard grasp. The
same object location is used for the soft and hard grasp tests.
The object is grasped using one of the two grasp modes and
the object is pulled out of the gripper by moving the upper
test fixture at 1 mm/s. The test is terminated after the object
leaves the gripper or when a maximum load of 250 N is
exceeded.

As explained in Sec. II-C, we must specify an ϵ that
controls the grasp force during a soft grasp mode. Due to
abnormal wear on the cable prior to this test, a soft grasp ϵ
of 0.5 N was needed to close the gripper. We use ϵ = 0.6
N in the test, which is equivalent to ϵ = 0.1 N due to the
additional friction.

We test three different object geometries in three different
sizes - spheres, cylinders, and triangular prisms with a
diameter or side length of 40 mm, 70 mm, and 100 mm. The
cylinders and triangular prisms are 100 mm tall. We chose
these objects as they test a variety of different grasps. The
cylinders test force closure grasps where the fingers cannot
wrap around the top of the object. The spheres additionally
test form closure grasps where the fingers are able to wrap
around the top of the object. The triangular prism serves as
an adversarial object that contacts the bellows of FROG.

As shown in Fig.6-b, FROG is able to grasp the medium-
sized objects the strongest, with the maximum holding
force reaching > 250 N, 65 N, and 30 N for the 70mm
sphere, cylinder, and triangular prism, respectively. The sharp
corners of the triangular prism interfere with the cable
and reduce the cable tension, reducing the grasp force that
FROG is able to exert. Form closure grasps greatly increase
the holding force, as friction is no longer needed to resist
external forces. FROG performs worse at holding objects
close to its minimum or maximum diameters.

The holding force for the form closure grasps on the
various spheres show a distinct peak as the test object is

pulled past the fingers. The 70 mm and 100 mm cylinders
show distinct regions before and after the proximal links
lose contact at around 40 mm and 24 mm of extension,
respectively. Overall, these results support that FROG is
capable of generating strong grasps with high holding forces.

Next, we compare how the holding force in a force closure
grasp compares to the predicted grasp forces in Sec. II-E. In a
force closure grasp the holding force is related to the grasp
force through a friction coefficient, we assume µgrasp =
0.3 (Carbon EPU 40 on Markforged Onyx). For the 40 mm
cylinder and triangle, we predict a holding force between 21
and 25 N. We observe an average grasp force of 18 and 17
N for the cylinder and triangle, respectively, showing good
agreement.

We then use the holding forces for force closure grasps
in the soft grasp mode to confirm that the soft grasp mode
greatly decreases the grasp force. Assuming the same friction
coefficient, this results in an maximum contact force of 6 N
per finger in the soft grasp mode. For grasps where only the
distal links contact the test object, the average contact force
is 1.3 N per finger. This suggests that the soft grasp mode
would be well suited to gentle grasping of fragile objects,
which we demonstrate in Sec. III-C.

We note that the holding forces for the 40 mm and 70
mm sphere in the soft grasp mode remain relatively large
since these are form closure grasps. In addition, the friction
in the system may have prevented the motor from correctly
regulating the cable tension as the objects push past the
fingers, resulting in abnormally high holding forces for these
grasps.

To validate that the closing period chosen in Sec. II-B
allows for quasi-static operation of the gripper, we test if
the holding force in the soft grasp increases over time. If
the holding force increases over time, fragile items could be
damaged in the grasp. We test using the soft grasp mode
because we expect the percent increase in grasp force to be
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bigger than in the hard grasp mode.
We measure the holding force on the 40 mm cylinder 4

times, each measurement taking 120 seconds. Immediately
after each measurement, we regrasp the cylinder and main-
tain the grasp for 300 seconds until the next measurement.
For each measurement, we calculate the average holding
force. The test lasts for 23 minutes in total and shows
no discernible relationship between time and holding force,
showing that FROG behaves quasi-statically.

B. Grasp Type Proprioception

We evaluate the accuracy of FROG’s grasp classifier on
21 unique test objects, listed in Table II. Objects in random
orientations were grasped off a table to test the classification
of “distal” and “both” grasps. In this specific setting (table-
top manipulation), we observe that “proximal” grasps are
hard to obtain so we test the classifier by handing the gripper
objects to grasp. We believe “proximal” grasps would be
more common in human-robot handoffs or catching. We
do not count trials where the grasp is not stable or where
the grasp has a mixed grasp type. For a given object, each
possible grasp type is tested 5 times.

We observe that the classifier is able to identify the type of
grasp 67% of the time. Most errors are from misclassifying
“distal” grasps as “both” grasps and vice versa. We expect
these grasp types to be the most likely to be misclassified as
the stiffness distributions for these two grasp types are close
and overlap (Fig.4-d).

The classifier performs poorly with compliant and objects
that are not radially symmetric. Compliant objects like the
foam block reduce the grasp stiffness because the object
stiffness appears to be in series with the actuator. Objects
like the multimeter, computer mouse, stacked construction
blocks, and toy pig are not radially symmetric and cause
the fingers to twist as they make contact with the object,
which may change the grasp stiffness. Despite being rigid
and radially symmetric, we believe the can of WD40 is
misclassified because it is near the grippers minimum grasp
diameter.

Compared to the original approach taken by Belzile and
Birglen [24], we see similar limitations in regard to object
and grasp symmetry. In later work [26, 25], the authors
are able to detect the exact contact location along a finger,
but require one actuator per finger. In all implementations,
the authors do not evaluate their approach with respect to
compliant objects.

Overall, the experiment shows that the classifier works
well on rigid objects that have an approximate radial sym-
metry.

C. Fragile Object Grasping

Finally, we demonstrate the FROG’s ability to grasp fragile
objects, shown in Fig.7. We grasp objects that are fragile due
to their geometry, brittleness, or low stiffness using FROG’s
feedforward soft grasp mode. We set ϵ = 0.1 N for all of
these tests. All objects were grasped off a table.
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Fig. 7: FROG’s structure and actuator allow it to easily grasp
fragile objects. Rows show, from top to bottom, the object,
the result after a soft grasp, and the result after a hard grasp.
Columns show (a) grasping a paper flower, (b) paper ball, (c)
potato chip, and (d) ball of Play-Doh. Objects are highlighted
in the gripper for clarity.

We first grasp two origami objects, a paper flower and a
paper ball, shown in Fig.7-a and Fig.7-b, respectively. Both
objects are crushed when grasped with the hard grasp mode
and are undamaged when grasped with the soft grasp mode.
Based off of tests done in Hughes et al. [29] and Maruyama
et al. [30], we demonstrate FROG on potato chips (Fig.7-c).
The hard grasp mode causes the potato chip to fracture and
the grasp to fail while the soft grasp mode is able to lift
the chip without damage. Finally, we show FROG grasping
a ball of Play-Doh without significant deformation using
the soft grasp mode (Fig.7-d). Once we switch to the hard
grasp mode, the ball is squished. This demonstrates the
effectiveness of our soft grasp mode in grasping fragile and
soft objects.

IV. DISCUSSION

In this work we present FROG, a soft gripper capable
of generating robust grasps that can be strong or gentle
using its direct drive actuator. FROG is able to leverage the
structure of its fingers to enable the use of a stiffness-based
prioprioception algorithm, allowing it to classify the type of
grasp it has on an object. These additional capabilities come
without large increases in hardware complexity and with only
the addition of simple control and sensing algorithms.

In the future, we are interested in further exploring the
use of the time series stiffness information from a grasp to
estimate flexure angles and optimizing the flexure design for
stiffness-based proprioception.
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Test Object Proximal Distal Both Overall

Bottle of Bleach - - 5/5 5/5

Computer Mouse - 0/5 - 0/5

Container of Play Doh - 4/5 3/5 7/10

Container of Wet Wipes - 4/5 5/5 9/10

Foam Block - 0/5 - 0/5

Large Roll of Tape - 4/5 - 4/5

Milk Frothing Pitcher - 4/5 - 4/5

Mug - 3/5 - 3/5

Multimeter - 0/5 - 0/5

Plastic Apple 5/5 5/5 - 10/10

Plastic Orange 5/5 5/5 - 10/10

Plastic Toy Pig - 2/5 0/5 2/10

Plastic Wine Glass - 4/5 4/5 8/10

Small Can of WD40 - 0/5 - 0/5

Small Hand Clamp - 2/5 - 2/5

Small Roll of Tape - 5/5 - 5/5

Softball - 5/5 4/5 9/10

Spam Can - 5/5 - 5/5

Stacked Large
Construction Blocks (3) 5/5 0/5 - 5/10

Tape Measure 5/5 4/5 - 9/10

Water Bottle - 3/5 - 3/5

Total 20/20 59/100 21/30 100/150

TABLE II: Accuracy of grasp type proprioception on the
test object set. For the “distal” and “both” grasp types,
objects are grasped off a table. For the “proximal” grasp
type, objects are handed to the gripper. We do not include
trials with grasps that are not stable or have mixed contact
types.
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