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Abstract— Recent advances in foundation models are signif-
icantly expanding the capabilities of AI models. As part of
this progress, this paper introduces a robot design framework
that uses a diffusion model approach for generating 3D mesh
structures. Specifically, we focus on generating directly fabri-
cable robot structures that require no post-processing guided
by human-imposed design constraints. Our approach can find
the optimal design of the robot by optimizing or composing
embedding vectors of the model. The efficacy of the framework
is validated through an application to design, fabricate, and
evaluate a jumping robot. Our solution is an optimized jumping
robot with a 41% increase in jump height compared to the state-
of-the-art design. Additionally, when the robot is augmented
with an optimized foot, it can land reliably with a success ratio
of 88% in contrast to the 4% success ratio of the base robot.

Index Terms— Computational Design, Generative Artificial
Intelligence, Design Optimization, Jumping Robot

I. INTRODUCTION

Robotics is rapidly advancing due to innovations in both
hardware and software. Improved actuators [1]–[3] and sen-
sors [4] have expanded robot capabilities, while AI tech-
nology—bolstered by increased computational power and
large datasets—has accelerated progress in robot control for
complex, high-level tasks [5]–[7].

Robot hardware design, unlike software development, of-
ten relies on traditional methods due to the complex, multi-
domain design space it encompasses, including dynamics,
kinematics, material science, and fabrication techniques. Past
research has advanced this field through bio-inspired robots
[8], [9], which emulate natural motion principles, and soft
robots [10], [11], which use flexible materials to introduce
embodied intelligence. Additionally, optimal design studies
focus on selecting and mathematically optimizing design
parameters based on their relationship to robot performance
[12]. While these methods have led to innovative break-
throughs, they require substantial human effort to fully
understand the robot’s operating principles and to develop
appropriate designs, which slows down the hardware design
(and fabrication) iteration process compared to the rapid pace
of software development.

Recently, sampling-based design methods have been intro-
duced to accelerate design iteration. For example, new robot
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designs can be generated by combining design features from
a set of existing robot designs [13] or foundational models
[14]. The incorporation of simulation tools that evaluate the
performance of the robot enables these sampling methods to
rapidly explore optimal designs. Due to their fast iteration
and generalizability, these methods have shown significant
potential in multi-domain optimization. For example, it is
possible to optimize the control method simultaneously with
design, often referred to as co-design or designing specific
robot components such as soft actuators to improve the
robot’s performance [15]. However, sampling-based methods
face challenges in considering fabrication and assembly con-
straints, as well as in integrating traditional manufacturing
techniques and mechanical components, particularly in areas
where large, relevant datasets are often lacking.

In this paper, we present a diffusion model-based robot de-
sign framework that bridges the gap between traditional and
sampling-based design methods. This framework generates
optimal robot structures that are directly fabricable without
the need for post-processing by building them on top of a
human-designed base robot, as shown in Fig. 1. To validate
the effectiveness of the approach, we apply it to jumping
robots—a domain where the dynamic nature of motion
highlights the critical importance of design optimization[16],
[17]. The paper contributions are:

• a method for seamlessly transforming mesh struc-
tures sampled from generative models into human-
designed robot structures, eliminating the need for post-
processing.

• an optimization method that enhances the generative
model’s ability to produce robot structures, improving
performances across both single-objective and multi-
objective functions.

• a composition method, inspired by [18], for generating
new designs that enhance overall robot performance
without additional optimization by composing pre-
optimized embedding vectors, each trained for different
objectives.

• application of the 3 methods to the design and fabrica-
tion of a jumping robot optimized to achieve maximal
jumping height and a stable landing.

II. RELATED WORK

Jumping Robots. Jumping is an intriguing form of loco-
motion for robots, as it enables them to overcome obstacles
or reach elevated areas that may be challenging for other
modes of movement [19]. Achieving an effective jump,
which involves rapid body acceleration in a short time, has



Fig. 1. An overview of the proposed framework. (a) The human first designs the base jumping robot with 3D CAD software (Solidworks, Dassault
Systems) and specifies the design workspace where the computational design will be conducted or not. (b) Given human-guided designs as an input, the
pre-trained diffusion model generates 3D structures that will be aligned to the robot structure. (c) The simulator (MuJoCo) is used measures the performance
of the robot generated from the computational design block (arrow a). In this research, jumping and landing performance are measured. The performance is
fed back to the computational design block (arrow b) to find proper embedding vectors that generate a high-performance robot design. (d) The real-world
robot is fabricated using the optimal embedding sets. The robot design from the previous blocks doesn’t need any post-processing as it is generated on
top of the base robot designed by the human.

driven researchers to explore efficient robotic mechanisms
and innovative actuation methods [20]–[24]. Nature has also
served as inspiration, with robots designed based on animals
such as fleas [25], water striders [17], and locusts [26], which
exhibit evolved strategies for jumping.
Generative Approaches for Robot Design. The tremendous
success of generative AI in other domains like natural lan-
guage [27], imagery [28], and 3D assets [29], have inspired
other related fields to adopt the generative approach. Specif-
ically, in robot design, with the help of physics simulation
[30]–[32], methods are developed for grippers [33], modular
robots [34], locomotion [35], or general co-design [14] to
leverage generative models as a source to propose diverse
and functional solutions.

III. ROBOT DESIGN AND OPTIMIZATION

A. Robot Design as a Computational Problem

We can write robot design problem as a computational
problem max

ψ∈Ψ

f (ψ), where Ψ is the design space and f (·)
measures the performance of the robot. The main challenge
is the extremely large search space in Ψ, rendering the
optimization intractable. We propose to alternatively tackle
an approximation of the original problem,

max
ψ∼p∗(ψ)

f (ψ), where p∗ = max
p∈P

Ep[ f (ψ)] (1)

where P is a set that covers all possible distributions in the
search space Ψ. The problem is broken down into finding a
“good” distribution p∗(ψ) which allows for the sampling of
well-performing robots and performing maximization over it.
This formulation enables us to leverage the recent advance-
ment of generative AI [36], [37], where we can sample from
the pre-trained generative model ψ ∼ p(ψ) =Epθ (x)[p(ψ|x)]
with pθ (x) as some parts of the design such as the link shape

of an articulated robot. Second, we can similarly constrain
the search space with human design Phuman ⊆ P as in
the original formulation Ψhuman ⊆ Ψ, e.g., only considering
the space with certain linkage topology designed by human
expert. Third, with certain types of generative models, we can
compose distributions pθ (x|c1,c2, . . .) ∝ pθ (x,c1,c2, . . .) =
p(x)∏i p(ci|x) [38]; for example, p(x|c1) may be a link
shape distribution for jumping higher and p(x|c2) may that
for landing more stably.

B. Diffusion-based Generative Models for Shape Design

Diffusion generative models [39]–[41] are latent variable
models as p(x) = p(x0) =

∫
p(xT )∏

T
t=1 p(xt−1|xt)dx1:T . The

transition kernel in the forward process is defined as a Gaus-
sian diffusion process q(xt |xt−1) = N (xt ;

√
1−βtxt−1,βtI)

for some 0 < βt < 1, starting at p(xT ) = N (xT ;0,I). This
allows an analytical form that corrupt the clean data x0
with noise q(xt |x0) = N (xt ;

√
ᾱtx0,(1− ᾱt)I), where ᾱt =

∏
t
s=1 αs and αt = 1−βt . The training is to learn the reverse

diffusion process via a so-called denoiser εθ with the loss,

min
θ

Et∈[1,T ],p(x0),N (ε;0,I)[||ε − εθ (xt , t)||2]. (2)

During inference time, we first sample from random noise
xT ∼ N (0,I) and gradually apply the denoiser

xt−1 ∼ N (
1

√
αt

(xt −
1−αt√
1− ᾱt

εθ (xt , t)),
1− ᾱt−1

1− ᾱt
βtI) (3)

We are using the Shap-E model [37], where diffusion op-
erates on the parameterized implicit function of 3D shape
– we denote the generated output directly as 3D shapes for
simplicity. In our case, the sampling of the robot designs
ψ ∼ p(ψ) then becomes, based on the linkage topology from
human conceptual design p(ψ|·), a sample of the shapes of
different links modeled by the diffusion model x ∼ pθ (x).



The sampled shapes undergo automated processing to
construct mesh structures for seamless integration into a
human-designed robot. This transformation involves a series
of mesh operations using three reference meshes—referred
to in this paper as the boundary, removal, and connection
meshes. First, the generated mesh is transformed to ensure its
bounding box fits the boundary mesh. Next, it is refined using
the removal mesh to avoid collisions with other components
and ensure smooth fabrication and assembly. Finally, the
refined mesh is integrated into the robot’s structure by
combining it with the connection mesh.

C. Embedding Optimization

Generative models can normally take embeddings c as
inputs for conditional generation p(x|c), e.g., using text
embedding to do text-to-3D generation. Prior work [14]
proposed to train the embedding for improved physical
utilities using physics-based simulation. The high-level idea
is to (i) actively create new data from the model and store it
in a buffer, (ii) leverage physics-based simulations to measure
performance, and (iii) optimize embeddings conditioned on
the diffusion model under a biased data distribution to
enhance robot performance. We adapt this technique in our
pipeline and extend it to ensure the feasibility of fabrication,

min
c

Et∼[1,T ],pθ (x0|c),N (ε;0,I)[||ε − εθ (xt , t,c)||2]. (4)

The major difference is how pθ (x0|c) is constructed – the
online training data generation, relevant to steps (i) and
(ii) mentioned above. First, we filter out all generated data
that violates the fabrication constraints including penetrating
other links or the environment in the initial condition, not
being watertight, and being too thin. Next, we evaluate the
performance of the design with a physics engine. Finally,
if we optimize for multiple objectives, we find the Pareto
front using linear regression, filtering out samples with
performance below the lower bound of a certain objective,
and find the farthest point set with respect to the Pareto
front. The evaluation of robot performance and the feasibility
constraints are implemented using MuJoCo [30] with the
linkage topology design represented as URDFs.

D. Composition of Embedding Vectors

With the formulation in Sec. III-A, we can compose robot
designs by composing the distributions. For example, we can
compose a distribution for jumping higher and another for
landing more stably into a distribution that generates a design
for simultaneously jumping high and landing stably. With
diffusion-based generative model, we can achieve compo-
sitional design by (i) performing embedding optimization
on different objectives, giving c1,c2, . . . and (ii) sample
the compositional distribution via the diffusion generative
process as in [38] via modifying the denoising/score term εθ

in Eq. 3 to ε̂(xt) = εθ (xt , t)+∑i εθ (xt , t,ci). More advanced
methods to sample from a compositional distribution such as
[42], [43] are left to future exploration.

IV. AUTOMATIC DESIGN OF OPTIMIZED JUMPING ROBOT

A. Base robot design

As our framework requires base robot design as an input,
we have designed the base robot using Solidworks (Dassault
Systems) inspired by previous jumping robots [20]–[22]. It
has a rhombus-shaped structure (Fig.2a) that can rapidly
move its center of mass (COM) vertically. Before jumping,
the upper and lower links are parallel to the ground. The
external motor pulls the tendon, which passes TR1 and TR2,
making them perpendicular to the ground. This action raises
the robot, shifting its COM vertically and initiating the jump
as illustrated in Fig.1(c). The foot is intuitively designed with
a cross shape to provide sufficient support for the robot’s
body. Since our research focuses on discovering improved
link shapes using generative AI, we located actuators and
other circuits outside the robot to minimize their impact on
jumping performance and facilitate rapid design iteration.

The MuJoCo model for the simulation is also built using
the base robot. Due to the limitation of the URDF which
doesn’t support parallel linkages, we modified the robot
model by dividing the robot foot to become two feet while
fabricating the real-world robot with a single foot. To reduce
the sim-to-real gap as much as possible, we applied equality
conditions between two feet geometries.

B. From components to the jumping robot

We augmented the upper and lower link designs to enhance
jumping height (single objective) and the foot designs to
improve landing stability while maintaining jumping per-
formance (multi-objective). Three reference meshes, that are
used to transform generated raw meshes into fabricable robot
structures, are defined for links and foot, as shown in Fig.
2(b) and (c), respectively. For the links, the boundary mesh
(yellow in the figure) is designed to be centered on the base
link with a cuboid shape, while the connection mesh (red in
the figure) is designed to have the same shape with both ends
of the base link. To ensure reliable integration, the boundary
and connection meshes are slightly overlapped, preventing
the final link from becoming too thin. A removal mesh was
designed to eliminate any structures that could interfere with
the robot’s motion by causing collisions with other parts.

The boundary and connection meshes for the foot were
similarly defined to provide design guidance. The distinct
difference was in the removal mesh as shown in the enlarged
view of Fig. 2(c)–this mesh was designed with space to
accommodate bolts and nuts, ensuring the foot can be as-
sembled with other links without requiring post-processing.

We conducted mesh operation for the upper and lower
links and one foot of the robot, while the opposite-side
meshes were mirrored to ensure a symmetric robot design.

C. Embedding Optimization for Link Design

Optimization for the embedding vectors of the links fo-
cused on maximizing the robot’s maximum jumping height
(MJH). Since an optimal design for the upper link may not
be equally effective for the lower link, we sampled distinct



Fig. 2. An overview of the base robot and pre-defined design workspace for the mesh transformation. (a) shows the overall design of the base
robot, which serves as the input for the proposed framework. In this paper, designs for the upper and lower links, as well as the foot, are generated based
on this base design. (b) and (c) illustrate the design workspace for the robot’s link and foot, respectively. These workspaces, defined by the human designer
considering fabrication and assembly, highlight areas for boundary (yellow), connection (red), and removal (gray) within the base design, which serve as
constraints for the AI-driven design process. The right side of the figures shows the example of generated mesh from this mesh operation process.

designs from separate embedding vectors for each. The z-
axis position of the approximate center of mass (COM) is
calculated in the simulation to find the MJH of the robot.
To balance computational resources, we set the number of
samples per optimization run to 500 and the filter size to 12.

One potential issue is that the link shape could converge
to an extremely thin design, as a lightweight structure may
offer benefits in achieving greater jumping heights. However,
such designs can be challenging to fabricate in real-world. To
address this, we estimated the mesh thickness by calculating
the average cross-sectional area of the mesh perpendicular to
its first principal axis. If this area is less than 40% of that of
the base link, we assigned their MJH to zero to filter them
out. Similarly, meshes with defects, such as non-watertight
structures, were also filtered by setting their MJH to zero.

D. Embedding Optimization for Foot Design

The robot’s foot structure is optimized focusing on land-
ing stability, as it plays a critical role during the landing
phase. To isolate the impact of foot design, all other robot
components remain consistent with the base model. Landing
stability is validated using the z-component of the body
direction vector after jumping, where a value of 1 and 0
each indicates the robot is standing upright or has fallen.

While the robot’s symmetrical design may result in suc-
cessful landings in simulation, real-world factors such as
friction, ground slope, and fabrication imperfection may
increase the risk of falling. To improve landing reliability
under these disturbances, we simulated its landing in seven
scenarios: one baseline condition with no external bias, three
with mass biases applied to the upper, lateral, and lower
links, and three with altered tendon routing, where tendon
points were slightly shifted to induce intentional asymmetry.
The final landing stability was calculated by averaging the
body direction vectors across all seven conditions.

Recognizing that optimizing for landing stability could
lead to designs that reduce MJH, we adopted a multi-
objective optimization approach, balancing both landing sta-
bility and jumping performance, for the foot design: the foot
design may converge toward a heavier structure, as increased

weight helps stabilize landings. To address the trade-off
between these metrics, we first performed linear regression
on the data after excluding non-watertight mesh cases. We
then filtered out designs with a body direction value lower
than 0.85 because landing stability was prioritized here.
From the refined dataset, we selected designs that deviated
positively from the regression line for the optimization,
to find the structure that offers consistent landing stability
without compromising jump height.

V. RESULTS

A. Embedding Optimization results for Link Design

The optimization results for the link design (Fig. 3) show
how the MJHs change as the optimization number increases.
First, we can find that the maximum value of MJH increases
each time the optimization is repeated. This means that,
through optimization, a better design that is not sampled
without optimization can be generated after the optimization.
We can also see that the sampling distribution (at the right
side of each graph) has moved upwards. It shows that the
optimization actually moves the average of the distribution,
improving the sampling efficiency - i.e., the optimization
creates a better chance to sample robot designs that can jump
better. Another interesting result here is that the optimization
reduces the number of zero jumping heights; it means that
the optimization is reducing the likelihood of making fault
meshes because a jumping height of zero means that there
are defects in the generated meshes.

B. Embedding Optimization results for Foot Design

Fig. 4 shows how the MJH and stability change through
the optimization of the foot design. The top 12 designs
sampled from the non-optimized distribution can only jump
about 0.4 meters, but the top results move to the right side
after repeated optimizations–this can also be seen in the
distribution graphs at the top of the figure. Since the best
result is observed in the design sampled from the embedding
that was optimized two times, we used this design when
developing the real-world robot.



Fig. 3. Embedding Optimization Results for Upper and Lower Links Design. (a) and (b) present the results of embedding optimization for the upper
and lower links, respectively, with a focus on maximizing jumping height.

Fig. 4. Embedding Optimization Results for Foot Design. Optimization
of embedding vectors that sample foot design for two objectives: jumping
height (x-axis) and landing stability (y-axis).

C. Embedding Composition results for Foot Design

We evaluated how the composition of embedding vectors,
each optimized with max jump height and landing stability,
can be used in the proposed design pipeline. As shown in
yellow and purple distributions in Fig. 5(a), each embedding
vector generates designs biased to one objective. However,
after the composition, the new embedding generates designs
that can show good results in both objectives as shown in
green data points and distribution without additional multi-
objective optimization.

While the composition results showed slightly lower per-
formance compared to previous multi-objective optimiza-
tions (red data points in the graph), embedding composition
remains a promising approach with significant potential in
robot design. One potential benefit is the ability to optimize
embeddings for specific robot performance features individ-
ually, without the complexity of multi-objective filtering.
These embeddings can then be composed based on the
desired priorities, allowing us to generate new robot designs
without the need for additional multi-objective optimization.

For example, we can see the sampled distributions move from
the stability-biased distribution (Fig. 5b) to the max-height-
biased distribution (Fig. 5d) by changing the guidance levels
of two embeddings without additional optimizations.

D. Real-world robot experiment

To validate the effectiveness of our framework, we fab-
ricated robots using a Bambu Lab P1S 3D printer with
polylactic acid (PLA Basic, Bambu Lab) filament. Since our
research focuses on structural design, the motor (AK60-6
V1.1 24V Exoskeleton Module-KV80, T-Motor) was posi-
tioned externally to eliminate the influence of motor dynam-
ics during testing. Tension was transmitted via a Bowden
cable, and all hardware experiments were conducted using
position control with maximum acceleration and velocity. In
line with the simulations, the maximum jumping height was
assessed by estimating the COM height based on the position
of the two lateral links. A demonstration of both the base and
AI-generated robots jumping is shown in Fig. 6.

The average MJH is obtained over 25 experimental trials
for robots with different link designs (Table I) with the values
in parentheses representing the standard deviation. Compar-
ing real-world data with simulation results reveals a notice-
able sim-to-real gap. Despite this discrepancy, the robot with
the optimized link design shows significant improvement in
jumping height. Interestingly, while the real-world results
are approximately 55% of the simulation values, the trend
between the two remains consistent. This suggests that our
design pipeline can still be effective, provided the sim-to-real
gap remains predictable.

The robot with optimal foot design landed safely in 22 out
of 25 jumping trials, while that with the base foot landed
safely only once in 25 trials. One possible reason for the
three failed landings in the real-world tests could be the
influence of the spring sheath attached to the lateral link for
actuation. For more details, please refer to the supplementary
video showing the successful and failed cases. As expected,
the optimized foot reduced the jumping height due to its
increased weight: the robot with the optimized foot jumped
0.36 meters, whereas the robot with both optimized links and
foot jumped 0.42 meters.



Fig. 5. Embedding Composition Results for Foot Design. (a) shows
the performance distribution of designs sampled from various embeddings.
The yellow and purple distributions represent the performance of designs
sampled from embeddings optimized for a single objective. The green scatter
plot and distribution represent the performance of designs sampled from a
composition of two embeddings. Red scatter points indicate the performance
of designs sampled from embeddings optimized for multiple objectives. (b)
- (d) present the performance distributions of designs from stability-biased,
balanced, and jumping-biased guidance, respectively. The x- and y-axes are
omitted for clarity but are consistent with those in (a).

TABLE I
SIMULATION AND EXPERIMENTAL RESULTS OF ROBOT JUMPING

Base link Sampled link Optimized link
Sim. 0.74m 1.04m 1.19m
Real 0.39m (0.11) 0.46m (0.15) 0.55m (0.12)

E. Possible Reasons for the higher performance

Although our design pipeline does not explicitly explain
why the generated designs perform better, several factors can
be inferred from quantitative and qualitative observations
of the simulation. To understand these improvements, it is
essential to understand the dynamics of jumping locomotion
[44]: (1) The input work applied by the motor before the
jump affects the jumping height. (2) The efficiency of con-
verting input work into kinetic energy (in a vertical direction)
is key-—this energy must primarily translate into vertical,
rather than horizontal, direction; and (3) At the takeoff
moment, the combined vertical momentum of all body parts
determines the robot’s COM velocity in the vertical direction.

To validate our hypothesis, the input work performed by
the tendon is measured in the simulation. Notably, the robot
with the optimized design showed 1.53 times more input
work than the base model. We hypothesize this is due to
the slightly tilted shapes of the upper link structures. This

Fig. 6. Jumping locomotion of the base and AI-generated robots. (a)
Base robot; (b) AI-generated robot before optimization; (c) AI-generated
robot after optimization.

Fig. 7. Deformation of the lower link at the jumping moment. (a)
shows the original shape of the lower link before jumping and (b) shows
how it deforms at the jumping moment.

creates singular positions that prevent the robot from jumping
until the tension reaches a certain level. This increases input
work, as it is the inner product of tension and displacement.
Another fact we found while operating the real-world robot
is that the lower links deform (Fig. 7), which may con-
tribute in jumping by storing and emitting elastic energy.
This phenomenon is particularly intriguing, as deformation
was not accounted for in the optimization process. Despite
the limitations in simulation accuracy, the simulator could
successfully found a creative design by finding a design that
jump after accumulating sufficient input work provided from
tendon-motor system.

VI. DISCUSSION AND CONCLUSION

This paper presents an AI framework for robot design
that leverages a diffusion model to generate optimized
robot structures. By combining AI generation with human-
guided mesh operation, our framework creates robot designs
without the need for post-processing. We demonstrate the
effectiveness of this approach by applying it to the design
of jumping robots, showing improved performance in both
jumping and landing. Our solution embodies a collaborative
effort between human designers and AI, with each com-
plementing the other’s strengths. Human designers excel
in considering fabrication and assembly constraints due to
their deeper understanding, while AI models can efficiently
explore vast design spaces, iterating quickly under predefined
constraints. This synergy between human intuition and AI-
driven exploration accelerates the design process and has the
potential to inspire new insights for human researchers.
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